

UNIVERSITAS NEGERI YOGYAKARTA

FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF MATHEMATICS EDUCATION Jalan Colombo Nomor 1 Yogyakarta 55281 Telepon(0274)565411 Pesawat 217, (0274)565411(TU),fax (0274)548203 Laman :fmipa.uny.ac.id, E-mail :humas_fmipa@uny.ac.id

Bachelor of Science in Mathematics

MODULE HANDBOOK

Module name:	Advanced Real Analysis							
Module level,ifapplicable:	Undergraduate							
Code:	MAT6233							
Sub-heading,ifapplicable:	-							
Classes,ifapplicable:	-							
Semester:	6 th							
Module coordinator:	Kus Prihantoso Krisnawan, M.Si.							
Lecturer(s):	1. Kus Prihantoso Krisnawan, M.Si.							
	2. Husna Arifah, M.Sc.							
	3. FitrianaYuli S., M.Si.							
Language:	Bahasa Indonesia							
Classification within the curriculum:	Compulsory course							
Teaching format / class	100 minutes lectures and 120 minutes structured activities per							
hoursperweekduring the	week.							
semester:								
	Total workload is 90,67 hours per semester which consists of							
Workload:	100 minutes lectures, 120 minutes structured activities, and							
	120 minutes self-study per week for 16 weeks.							
Creditpoints:	2							
Prerequisites course(s):	Real Analysis (MAT6325)							
	After taking this course the students have ability to:							
Course outcourses	CO 1. Respecting other people's views, opinions, and original							
Course outcomes:	ideas							
	CO 2. Understanding definitions, theorems, and some							

	characteristics in mathematics using critical and								
	systematic thinking in a manner individually or groups								
	CO 3. Communicating, in writing or verbally, ideas to								
	understand or solve mathematical problems.								
	CO 4. Explaining the meaning or definition of terms and intent of the theorems or properties in mathematicsCO 5. Using related definitions and theorems to prove ot								
	properties or theorems.								
	This course discusses the subject of differentiation,								
	sequences and series of functions, and Riemanian								
	Integral. The topics in differential are derivative and								
	intermediate value property, the mean value theorem, and a								
	continues nowhere-differentiable function. The subject of								
Content:	sequences and series of functions include;piecewise and								
	uniform convergence, series, power series, and Taylor series.								
	Finally, the subject of Riemanian Integral consist of the								
	definition of Riemanian Integral, Integrating functions with								
	discontinuities, properties of integral, the fundamental theorem								
	of calculus, and Lebesgue's criterion for Riemann Integrability.								
	CO1: Attitude assessment is carried out at each meeting								
	using observation and / or self-assessment techniques by the								
	assumption that every student is good. The student will be								
	given a value as very good or not good if he/she shows,								
	significantly, excellent or poor attitude. The results of attitude								
	assessment used as one of the graduation requirements.								
Study/exam achievements:	The final grades will be weight as follow:								
	NoCOObjek PenilaianTeknikBobotPenilaianPenilaian								
	1CO 2 and 4a. PresentationObservation10%b. IndividualWritten10%								
	Assignment								
	c. Quiz Written 20%								
	2CO 3 and 5a. GroupWritten10%Assignment								
	b. Mid test 20%								

			c. Final test		30%			
				Total	100%			
Forms of media:	Board, LCD Projector, Laptop/Computer							
	1. Abbot, S. 2010. Understanding Analysis. New York:							
	Springer ScienceBusiness Media, Inc.							
	2. Bartle, R.G.& Sherbet D.R. 2000. Introduction to Real							
	Analysis. Third Edition. New York: Jhon Wiley&Sons.							
Literature:	3. Brannan, D.A. 2006. A First Course in Mathematical							
	Analysis. Cambridge: Cambridge University Press.							
	4. Davidson, K.R. & Donsig, A.P. 2010. Real Analys							
		Applications. Upper Sadle River: Prentice-Hall, Inc.						
	5	5. Walter Rudin, 2000. Principles of Mathematical Analysis,						
		Third Edition	. McGraw-Hill, Inc.					

PLO and CO mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PL07	PLO8	PLO9	PLO10
CO1		\checkmark								
CO2			✓							
CO3				✓						
CO4					✓					
CO5						\checkmark				