

UNIVERSITAS NEGERI YOGYAKARTA

FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF MATHEMATICS EDUCATION

Jalan Colombo Nomor 1 Yogyakarta 55281 Telepon(0274)565411 Pesawat 217, (0274)565411(TU),fax (0274)548203 Laman :fmipa.uny.ac.id, E-mail :humas_fmipa@uny.ac.id

Bachelor of Science in Mathematics

MODULE HANDBOOK

Module name:	Artificial Intelligence					
Module level,if applicable:	Undergraduate					
Code:	MAT6358					
Sub-heading,if applicable:	-					
Classes,if applicable:	-					
Semester:	7 th					
Module coordinator:	Dr. Sri Andayani, M.Kom					
Lecturer(s):	1. Dr. Sri Andayani, M. Kom					
	2. Nurhadi Waryanto, M.Eng					
Language:	Bahasa Indonesia					
Classification within the	Elective Course					
curriculum:	Elective Course					
Teaching format / class	150 minutes lectures and 180 minutes structured activities per					
hours perweek during the	week.					
semester:	WOOK.					
	Total workload is 136 hours per semester which consists of					
Workload:	150 minutes lectures, 180 minutes structured activities, and					
	180 minutes self-study per week for 16 weeks.					
Creditpoints:	3					
Prerequisites course(s):	Algorithm and Programming (MAT6310)					
	After taking this course the students have ability to:					
	CO1. Showing polite, honest, good attitude in lectures.					
Course Outcomes	CO2. Communicate ideas in understanding the basic theories					
	of Artificial intelligence and their functions independently					
	and in groups					

	CO3. Knowing and analyzing cases related to artificial intelligence.							
	CO4. Using algorithms to solve cases related to artificial intelligence							
	CO5. Applying artificial intelligence systems to solve several problems							
Content:	This course discusses definition of artificial intelligence, scope, characteristics, programming and development, searching algorithms, Soft computing: fuzzy, genetic algorithms, neural networks.							
Study/exam achievements:	algorithms, neural networks. CO1: Attitude assessment is carried out at each meeting by observation and / or self-assessment techniques using the assumption that basically every student has a good attitude. The student is given a value of very good or not good attitude if they show it significantlycompared to other students in general. The result of attitude assessment is not a component of the final grades, but as one of therequirements to pass the course. Students will pass from this course if at least have a good attitude. The final mark will be weight as follow: No CO Assessment Object Assessment Weight Technique							
Forms of media:	Board, LCD Projector, Laptop/Computer							
Literature:	 Negnevitsky, Michael. 2005. Artificial Intelligence-A Guide to Intelligent Systems- Second Edition. Pearson Education Limited Russel, Stuart and Norvig, Peter. 1995. Artificial Intelligence: A Modern Approach. Prentice Hall International, Inc. 							

PLO and CO mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10
CO1	✓									
CO2			✓							
CO3					✓					
CO4								✓		
CO5									✓	