

UNIVERSITAS NEGERI YOGYAKARTA

FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF MATHEMATICS EDUCATION

Jalan Colombo Nomor 1 Yogyakarta 55281 Telepon(0274)565411 Pesawat 217, (0274)565411(TU),fax (0274)548203 Laman :fmipa.uny.ac.id, E-mail :humas_fmipa@uny.ac.id

Bachelor of Science in Mathematics

MODULE HANDBOOK

Design of Experiment					
Undergraduate					
MAT6366					
-					
-					
7 th					
Kismiantini, S.Si., M.Si., Ph.D.					
Kismiantini, S.Si., M.Si., Ph.D.					
Bahasa Indonesia					
Elective Course					
Licetive Course					
150 minutes lectures and 180 minutes structured activities per					
week.					
WOOK.					
Total workload is 136 hours per semester which consists of					
150 minutes lectures, 180 minutes structured activities, and					
180 minutes self-study per week for 16 weeks.					
3					
Advanced Statistics (MAT6309)					
After taking this course the students have ability to:					
CO1. Demonstrate collaborative attitude and independence in					
carrying out individual tasks and group assignments					
CO2. Communicate original ideas in solving mathematical					
problem both writing and orally as a way of self-					
improvement for working and studying.					

	CO3. Explain various types of experimental design.							
	CO4. Use experimental design that matched with the problem							
	of interest.							
	CO5. Analyze experimental data based on the chosen							
	experimental design. This course discusses about the basic principles of							
	experimental design. Randomized design for one fa							
	randomized block design, latin square design, graeco-latin-							
Content:	square design.							
	Balanced incompleted block design, factorial design with two							
	factor, factorial design with more than two factor, blocking in							
	factorial design with two factor, split plot design, strip plot							
	design, response-surface methodology.							
	CO1: Attitude assessment is carried out at each meeting by							
	observation and / or self-assessment techniques using the							
	assumption that basically every student has a good attitude.							
	The student is given a value of very good or not good attitudeif							
	they show it significantlycompared to other students in							
	general. The result of attitude assessment is not a component							
	of the final grades, but as one of therequirements to pass the							
	course. Students will pass from this course if at least have a							
Study/examachievements:	good attitude.							
	3							
	The final mark will be weight as follow:							
	No CO Assessment Object Assessment Weight Technique							
	1 CO1 a. Group Assignment Written test 20% CO2 b. Quiz 15%							
	CO3 c. Project 20% CO4 d. Mid 20%							
	CO5 e. Final exam 25%							
Forms of media:	Board, LCD Projector, Laptop/Computer							
	1. Montgomery, D.C. 2013. Design and analysis of							
	experiments, 8th edition. Hoboken, NJ: John Wiley &							
Literature:	Sons, Inc.							
	2. Lawson, J. 2015. Design and analysis of experiments with							

R. Boca Raton, FL: CRC Press.								
3. Dean, A., Voss, D., Draguljić, D. 2017. Design and								
analysis of experiments, 2nd edition. New York: Springer								
International Publishing.								

PLO and CO mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10
CO1		✓								
CO2				✓						
CO3					✓					
CO4							✓			
CO5									✓	