

UNIVERSITAS NEGERI YOGYAKARTA

FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF MATHEMATICS EDUCATION Jalan Colombo Nomor 1 Yogyakarta 55281 Telepon(0274)565411 Pesawat 217, (0274)565411(TU),fax (0274)548203 Laman :fmipa.uny.ac.id, E-mail :humas_fmipa@uny.ac.id

Bachelor of Science in Mathematics

MODULE HANDBOOK

Module name:	Differential Equation				
Module level, if applicable:	Undergraduate				
Code:	MAT6314				
Sub-heading,if applicable:	-				
Classes,if applicable:	-				
Semester:	3 th				
Module coordinator:	Eminugroho Ratna Sari, M.Sc.				
	1. Eminugroho Ratna Sari, M.Sc.				
	2. Dr. Jailani				
Language:	Bahasa Indonesia				
Classification within the					
curriculum:					
Teaching format / class	150 minutes lectures and 180 minutes structured activities per				
hours perweek during the					
semester:					
	Total workload is 136 hours per semester which consists of				
Workload:	150 minutes lectures, 180 minutes structured activities, and				
	180 minutes self-study per week for 16 weeks.				
Creditpoints:	3				
Prerequisites course(s):	Integral Calculus (MAT6307)				
Course Outcomes:	After taking this course the students have ability to:				
	CO1. Demonstrate collaborative attitude and independence to				
	do individual or group assigntments				
	CO2. Communicate ideas in solving mathematical problems				
	in writing or verbally				

	CO3. Explain the concepts and how to solve differential								
	equations in both one or higher order, both homogeneous or non-homogeneous								
	CO4. Formulate a mathematical model regarding differentia								
	equation problems								
	The course discusses about definition and solution of								
	differential equation, exact solution of first order equation,								
	method of grouping, integrating factor, separable equation								
Content:	homogeneous equation, linear equation, Bernoulli equation								
	special integrating factor, special transformation,								
	homogeneous equation with constant coefficients.								
	undetermined coefficients method, variation of parameters,								
	and Cauchy-Euler equation.								
	CO1: Attitude assessment is carried out at each meeting by								
	observation and / or self-assessment techniques using the								
	assumption that basically every student has a good attitude.								
	The student is given a value of very good or not good attitudeif								
	they show it significantly compared to other students in								
	general. The result of attitude assessment is not a component								
	of the final grades, but as one of therequirements to pass the								
	course. Students will pass from this course if at least have a								
Study/exam achievements:	good attitude.								
	The final mark will be weight as follow:								
	No CO Assessment Object Assessment Weight								
	1 CO2, a. Individual assessment Presentation/ 10%								
	CO3,and b. Group assessment Written test 20%								
	presentation)								
	d. Mid exam 30%								
	e. Final exam 30% Total 100%								
Forms of media:	Board, LCD Projector, Laptop/Computer								
Literature:	1. Ross, S.L, Differential Equations, 1984, J. Willey, New								

	York
2	B. Boyce, W.E., dan Diprima, R.C. Elementary Differential
	Equations dan Boundary Value Problems, 1992, J. Willey,
	New York.
3	B. Zill, Dennis G., Cullen, Michael R. 1997. Differential
	Equations with Boundary-value Problems. Fourth Edition.
	USA : Brooks/Cole Publishing Company.
4	. Trench, W.F. 2013. Elementary Differential Equations.

PLO and CO mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10
CO1		✓								
CO2			✓							
CO3					✓					
CO4							✓			
CO5										