

UNIVERSITAS NEGERI YOGYAKARTA

FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF MATHEMATICS EDUCATION Jalan Colombo Nomor 1 Yogyakarta 55281 Telepon(0274)565411 Pesawat 217, (0274)565411(TU),fax (0274)548203 Laman :fmipa.uny.ac.id, E-mail :humas_fmipa@uny.ac.id

Bachelor of Science in Mathematics

MODULE HANDBOOK

Module name:	History of Mathematics					
Module level, if applicable:	Undergraduate					
Code:	MAT6231					
Sub-heading,if applicable:	-					
Classes,if applicable:	-					
Semester:	6 th					
Module coordinator:	Dr. Ariyadi Wijaya, M.Sc.					
	1. Dr.Ariyadi Wijaya, M.Sc.					
Lecturer(s):	2. Ilham Rizkianto, M.Sc.					
Language:	Bahasa Indonesia					
Classification within the						
curriculum:						
Teaching format / class	100 minutes lectures and 120 minutes structured activities per week					
hours perweek during the						
semester:						
	Total workload is 90.67 hours per semester which consists of					
Workload:	100 minutes lectures, 120 minutes structured activities, and					
	120 minutes self-study per week for 16 weeks.					
Creditpoints:	2					
Prerequisites course(s):	-					
	After taking this course the students have ability to:					
Course outcomes:	CO1. Respect peoples with different ideas.					
	CO2. Identify relevance and/or contribution of mathematical					
	concepts in ancient civilization to the modern					
	mathematical concept.					

	CO3. Communicating research ideas to solve mathematical						
	problems both written and orally.						
	CO4. Explaining mathematical concept developed in each						
	civilization						
	CO5. Solving mathematical problem in the context of the						
	History of Mathematics in several civilization.						
	In general, the subject of Mathematics History is intended to						
	provide insight into the development of mathematical concepts						
	from several civilizations. In this course we study about:						
	mathematical systems; Babylonian and Egyptian numerical.						
	Fuclid and His Work (The Elements): Pythagoras and						
Content:	Descartes: Greek Mathematics: Chinese Mathematics: Indian						
	Descartes; Greek Mathematics; Chinese Mathematics; Indian						
	Mathematics; Islamic Mathematics; Medieval European						
	Math	ematics,	Algebraic History; N	Ion-Euclidean	Geometry		
	Deve	lopment	; Calculus Developme	nt; and Deve	elopment of		
	Stati	stics and	Probability Theory.				
	CO1: Attitude assessment is carried out at each meeting by						
	observation and / or self-assessment techniques using the						
	assumption that basically every student has a good attitude.						
	The student is given a value of very good or not good attitudeif						
	they show it significantlycompared to other students in						
	general. The result of attitude assessment is not a component						
	of the final grades, but as one of therequirements to pass the						
	course. Students will pass from this course if at least have a						
	and attitude						
Study/exam achievements:							
	The final mark will be weight as follow:						
	The final mark will be weight as follow.						
	No	CO	Assessment Object	Assessment	Weight		
	1	<u> </u>	Drecontation	Technique	1504		
	2	C02	a. Individual	Written test	10%		
		CO3	Assignment				
		CO4	b. Group Assignment		10%		
		605	d Mid		15% 25%		
			e. Final exam		25%		
				Total	100%		

Formsof media:	Board, LCD Projector, Laptop/Computer						
	1. Katz, V. J. 2009. A History of Mathematics: An						
	Introduction. (Third Edition). Boston: Addison-Wesley.						
	2. Burton, D. M. 2011. The History of Mathematics: An						
Literature:	Introduction (Seventh Edition). New York: McGraw Hill.						
	3. Hodgkin, L. 2005. A History of Mathematics: From						
	Mesopotamia to Modernity. New York: Oxford University						
	Press.						

PLO and CO mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10
CO1		✓								
CO2			\checkmark							
CO3				✓						
CO4					✓					
CO5						✓				