

UNIVERSITAS NEGERI YOGYAKARTA

FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF MATHEMATICS EDUCATION Jalan Colombo Nomor 1 Yogyakarta 55281 Telepon(0274)565411 Pesawat 217, (0274)565411(TU),fax (0274)548203 Laman :fmipa.uny.ac.id, E-mail :humas_fmipa@uny.ac.id

Bachelor of Science in Mathematics

MODULE HANDBOOK

Module name:	Introduction to Dynamical Systems
Module level, if applicable:	Undergraduate
Code:	MAT6351
Sub-heading,ifapplicable:	-
Classes,ifapplicable:	-
Semester:	6 th
Module coordinator:	Kus Prihantoso Krisnawan, M.Si.
	1. Dr. Hartono;
Lecturer(s):	2. Kus Prihantoso K., M.Si.
Language:	Bahasa Indonesia
Classification within the curriculum:	Objective course
Teaching format / class hoursperweekduring the semester:	150 minutes lectures and 180 minutes structured activities per week.
Workload:	Total workload is 136 hours per semester which consists of 150 minutes lectures, 180 minutes structured activities, and 180 minutes self-study per week for 16 weeks.
Creditpoints:	3
Prerequisites course(s):	Differential Equations (MAT6214)
Courseoutcomes:	After taking this course the students have ability to: CO 1. Respecting other people's views, opinions,and original ideas
	CO 2. Understanding definitions, theorems, some forms of phase portraits, and nature of the solution of dynamical

	systems using critical and systematic thinking in a								
	manner individually or groups								
	CO 3. Communicating, in writing or verbally, ideas to								
	understand or solve mathematical problems.								
	CO 4. Explaining the meaning of the phase portraits and the								
	nature of solution to figure out the characteristics of dynamical system critical points.								
	CO 5. Making an appropriate dynamical system models and a								
	computer simulation of dynamical system solutions.								
	This course containsdefinitions and theorems as the								
	foundations of mathematics dynamical systems, methods to								
	get solutions of linear systems, and methods to see the nature								
	of solutions. As the foundations, the discussed theories are								
	the definition of dynamical system, diagonalization, eigen								
Content:	values, and eigen vectors. Meanwhile, the methods of getting								
Content.	solutions for linear systems which have real numbers but								
	different eigen values, complex eigen values, and the same								
	eigen values. And finally, the nature of the solutions will be								
	explained by linearization, Lyapunov method, center manifold								
	theorem, normal form, and some methods to see if the								
	solutions have periodic orbits or undergo bifurcations.								
	CO1: Attitude assessment is carried out at each meeting								
	using observation and / or self-assessment techniques by the								
	assumption that every student is good. The student will be								
	given a value as very good or not good if he/she shows,								
	significantly, excellent or poor attitude. The results of attitude								
	assessment used as one of the graduation requirements.								
Study/exam achievements:									
	The final grades will be weight as follow:								
	NoCOObjek PenilaianTeknikBobotPenilaian								
	1CO 2, and 4a. PresentationObservation10%b. IndividualWritten10%								
	Assignment								
	c. QuizWritten20%2CO 3 and 5a. GroupWritten10%								
L									

			Aggignment					
			Assignment		2004			
			b. Mid test		20%			
			c. Final test		30%			
				Total	100%			
Forms of media:	Board, LCD Projector, Laptop/Computer							
	1. Perko, L. 2000. Differential Equations and Dynamical							
	Systems. New York: Springer-Verlag. 2. Kuznetsov, Y.A. 1998. Elements of applie							
	theory. Second Edition. New York: Springer-Verla 3. Wiggins, S. 1990. Introduction to applied							
Literature:								
	dynamical systems and chaos. New York: Springer-							
	Verlag.							
	4. Verhulst, F. 1990. Nonlinear differential equations and							
	dynamical systems.New York: Springer Science.							

PLO and CO mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10
CO1		✓								
CO2			✓							
CO3				✓						
CO4					✓					
CO5							✓			
CO6										