

UNIVERSITAS NEGERI YOGYAKARTA

FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF MATHEMATICS EDUCATION Jalan Colombo Nomor 1 Yogyakarta 55281 Telepon(0274)565411 Pesawat 217, (0274)565411(TU),fax (0274)548203 Laman :fmipa.uny.ac.id, E-mail :humas_fmipa@uny.ac.id

Bachelor of Science in Mathematics

MODULE HANDBOOK

Module name:	Introduction to Lebesque Measure Theory and Integral						
Module level, if applicable:	Undergraduate						
Code:	MAT6346						
Sub-heading,if applicable:	-						
Classes,if applicable:	-						
Semester:	7 th						
Module coordinator:	Dr. Hartono						
	1. Dr. Hartono						
Lecturer(s):	2. Kus Prihantoso Krisnawan, M.Si.						
Language:	Bahasa Indonesia						
Classification within the curriculum:	Objective course						
Teaching format / class	150 minutes lectures and 180 minutes structured activities per						
hoursperweekduring the	week.						
semester:							
	Total workload is 136 hours per semester which consists of						
Workload:	150 minutes lectures, 180 minutes structured activities, and						
	180 minutes self-study per week for 16 weeks.						
Creditpoints:	3						
Prerequisites course(s):	Advanced Linear Algebra (MAT6326)						
	After taking this course the students have ability to:						
	CO 1. Respecting other people's views, opinions, and original						
Course outcomes:	ideas						
	CO 2. Understanding definitions, theorems, and some						
	characteristics in mathematics using critical and						

	systematic thinking in a manner individually or groups							
	CO 3. Communicating, in writing or verbally, ideas to							
	understand or solve mathematical problems.							
	CO 4. Explaining the meaning or definition of terms and the							
	intent of the theorems or properties in mathematics							
	CO 5. Using related definitions and theorems to prove other							
	properties or theorems.							
	This d	course con	tains some found	dations on re	eal numb	ber		
	systems (\mathbb{R}), Lebesgue measure sets, Lebesgue measure							
Content:	functio	ons, andLeb	esgue Integration.	Firstly, it will b	be given t	the		
	foundations, such as; reviewsonsets, countable and							
	uncountable sets, sequences, and functions. Secondly, the							
	subject of Lebesgue measure sets includes: Lebesgue outer							
	measure, measurable sets, and non-measurable sets. Finally,							
	the subject of Lebesgue measure functionscontains: sums,							
	products and compositions, measurable functions, and							
	sequences of measurable functions. And, at the end of the							
	course we discussed the Lebesgue integration which							
	contains:the Riemann integral, the Lebesgue integral for							
	functions on sets of finite measure, the Lebesgue integral for							
	nonnegative measurable functions, and the general Lebesgue							
	integral.							
	CO1: Attitude assessment is carried out at each meeting							
	using observation and / or self-assessment techniques by the							
	assumption that every student is good. The student will be							
	given a value as very good or not good if he/she shows,							
	significantly, excellent or poor attitude. The results of attitude							
Study/exam achievements:	assessment used as one of the graduation requirements.							
	The final grades will be weight as follow:							
	No CO Objek Penilaian Teknik Bob							
	1	CO_2 and A	a Presentation	Penilaian	10%			
		50 2 anu 4	b. Individual	Written	10%			
		1	Assignment	1	1	1		

			c. Quiz	Written	20%		
	2	CO 3 and5	a. Group	Written	10%		
			Assignment				
			b. Mid test		20%		
			c. Final test	_	30%		
				Total	100%		
Forms of media:	Board, LCD Projector, Laptop/Computer						
	1. Royden, H.L. and Fitzpatrick, P.M. 2010. Real Analysis.						
	Fourth Edition.Pearson Education Asia Limited and China						
	Machine Press.						
	2. Frank Burk. 1998. Lebesgue Measure and Integration: An						
Litoroturo	Introduction. New York: Jhon Wiley&Sons.						
Literature:	3. Bear, H.S. 2002. A Primer of Lebesgue Integration.						
	Second Edition. New York: Academic Press.						
	4. Wilcox, H. and Myers, D.L. 1978. An Introduction to						
	Lebesgue Integration and Fourier Series. Huntingto						
	New York: Robert E. Krieger Publishing Company, Inc.						

PLO and CO mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10
CO1		✓								
CO2			✓							
CO3				✓						
CO4					✓					
CO5						✓				