

UNIVERSITAS NEGERI YOGYAKARTA

FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF MATHEMATICS EDUCATION

Jalan Colombo Nomor 1 Yogyakarta 55281 Telepon(0274)565411 Pesawat 217, (0274)565411(TU),fax (0274)548203 Laman :fmipa.uny.ac.id, E-mail :humas_fmipa@uny.ac.id

Bachelor of Science in Mathematics

MODULE HANDBOOK

Module name:	Numerical Methods					
Module level,if applicable:	Undergraduate					
Code:	MAT6332					
Sub-heading,if applicable:	-					
Classes,if applicable:	-					
Semester:	6 th					
Module coordinator:	Sahid, M.Sc					
	1. Sahid, M.Sc;					
Lecturer(s):	2. Fitriana Yuli S., M.Si;					
	3. Nikenasih B, M.Sc					
Language:	Bahasa Indonesia					
Classification within the						
curriculum:	Compulsory course					
Teaching format / class	150 minutes lectures and 100 minutes attrictured activities are					
hours perweek during the	150 minutes lectures and 180 minutes structured activities per week.					
semester:	Week.					
	Total workload is 136 hours per semester which consists of					
Workload:	150 minutes lectures, 180 minutes structured activities, and					
	180 minutes self-study per week for 16 weeks.					
Creditpoints:	3					
Prerequisites course(s):	Algorithms and Programming (MAT 6310)					
Course outcomes:	After taking this course the students have ability to:					
	CO1. Explain the meaning of numerical methods and the					
	importance of numerical methods in solving					
	mathematical problems					

	CO2. Explain the concept of errors and concepts related to				
	errors in numerical computing, both theoretically and				
	practically				
	CO3. Use special math software (Euler Maths Toolbox,				
	Octave, SCILAB, or MATLAB, etc.) to implement				
	algorithms in numerical methods				
	CO4. Using a numerical method that is suitable for				
	determining the completion of a system of linear				
	equations (SPL)				
	CO5. Using a numerical method that is suitable for calculating				
	the approximation solution of a nonlinear equation				
	CO6. Using a numerical method that is suitable for calculating				
	the approximation value of a function (interpolation)				
	CO7. Using a numerical method that is suitable for calculating				
	the approximation solution of derivative				
	CO8. Using numerical methods that are suitable for calculating				
	the aproximation solution of integral				
	CO9. Using the numerical method that is suitable for				
	calculating the approximation solution to ordinary				
	differential equations (initial value problem)				
	The course discusses about errors in numerical				
	approximation, numerical system solving of linear equations,				
	numerically almost non-linear root equations, numerical				
	interpolation, degradation and integration, and numerical				
Content:	solving of ordinary differential equations (initial value				
	problems). Some numerical methods for solving mathematical				
	problems are introduced in this course. There is a practical				
	activity using a computer program (Euler Maths Toolbox,				
	Octave, SCILAB, or MATLAB, etc.) to implement algorithms				
	and solve numerically related mathematical problems.				
Study/exam achievements:	CO1: Attitude assessment is carried out at each meeting by				
	observation and / or self-assessment techniques using the				
	assumption that basically every student has a good attitude.				
	The student is given a value of very good or not good attitude				

if they show it significantly compared to other students in general. The result of attitude assessment is not a component of the final grades, but as one of the requirements to pass the course. Students will pass from this course if at least have a good attitude. The final mark will be weight as follow: CO Assessment Assessment Weight No **Object Technique** CO 1-CO a. Individual Written test 15% assignment b. Group 15% assignment c. Quiz 10% d. Mid Exam 30% e. Final Exam 30% Total 100% Forms of media: Board, LCD Projector, Laptop/Computer Pengantar Komputasi Numerik dengan MATLAB (2005) oleh Sahid (Penerbit Andi Yogyakarta) 2. Handout Metode Numerik (Sahid, 2008-2009, FMIPA UNY) 3. Applied Numerical Methods with Matlab for Engineers Literature: and Scientists, third edition (2012) oleh Steve Chapra. (The McGraw-Hill Companies, Inc.) Numerical Analysis, 9 th edition (2011), oleh Richard L.

PLO and CO mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10
CO1		✓								
CO2			✓							
CO3					✓					
CO4							✓			
CO5							✓			
CO6							✓			
CO7							✓			
CO8										✓
CO9										✓

Learning.)

Burden & Douglas Faires. (Brooks/Cole, Cengage