

UNIVERSITAS NEGERI YOGYAKARTA

FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF MATHEMATICS EDUCATION Jalan Colombo Nomor 1 Yogyakarta 55281 Telepon(0274)565411 Pesawat 217, (0274)565411(TU),fax (0274)548203 Laman :fmipa.uny.ac.id, E-mail :humas_fmipa@uny.ac.id

Bachelor of Science in Mathematics

MODULE HANDBOOK

Module name:	Optimization Theory				
Module level, if applicable:	Undergraduate				
Code:	MAT6356				
Sub-heading,if applicable:	-				
Classes,if applicable:	-				
Semester:	6 th				
Module coordinator:	Kus Prihantoso Krisnawan, M.Si.				
Lecturer(s):	Kus Prihantoso Krisnawan, M.Si.				
Language:	Bahasa Indonesia				
Classification within the curriculum:	Elective course				
Teaching format / class	150 minutes lectures and 180 minutes structured activities per				
hours perweek during the	week				
semester:	WEEK.				
	Total workload is 136 hours per semester which consists of				
Workload:	150 minutes lectures, 180 minutes structured activities, and				
	180 minutes self-study per week for 16 weeks.				
Creditpoints:	3				
Prerequisites course(s):	Linear Programming (MAT6319)				
	After taking this course the students have ability to:				
	CO 1. Respecting other people's views, opinions, and original				
Course outcomes:	ideas				
	CO 2. Understanding definitions, theorems, and some				
	algorithmsto get an optimal solutionusing critical and				
	systematic thinking in a manner individually or groups				
	CO 3. Communicating, in writing or verbally, ideas to				

	understand or solve mathematical problems.								
	CO 4. Explainingthe right methodoralgorithm to solve an								
	optimization problem.								
	CO 5. Making an appropriate mathematics optimization								
	model.								
	CO 6. Making a computer programming using the right								
	algorithm to make a simulation or to find an optimal								
		solution of a m	athematics optimi	zation problen	n.				
	This	course conta	insdefinitions and	d theorems	as the				
	founda	ations of mathe	matics optimizatio	on theory and	methods				
	to get	optimal solution	s of mathematics	optimization pr	oblems.				
	As the foundations, the discussed theory are Euclidean space,								
Content:	convex sets and convex functions, real functions, gradient,								
	global and local extreme. Meanwhile, the methods of getting								
	solution will be split on three parts; unconstrained optimization,								
	constrained optimization of differentiable functions, and								
	nondifferentiable optimization.								
	CO1: Attitude assessment is carried out at each meeting by								
	observation and / or self-assessment techniques using the								
	assumption that basically every student has a good attitude.								
	The student is given a value of very good or not good attitude								
	if they show it significantly compared to other students in								
	general. The result of attitude assessment is not a component								
	of the final grades, but as one of the requirements to pass the								
	course. Students will pass from this course if at least have a								
Study/exam achievements:	good attitude.								
	The final grades will be weight as follow:								
	No	СО	Objek Penilaian	Teknik	Bobot				
	1	CO 2, 4, and 6	a. Presentation	Observation	10%				
			b. Individual	Written	10%				
			c. Quiz	Written	20%				
	2	CO 3 and5	a. Group	Written	10%				

	Assignment b. Mid tost	2006					
	c. Final test	30%					
	Total	100%					
Forms of media:	Board, LCD Projector, Laptop/Computer						
Literature:	1. Ruszczyński. 2006. Nonlinear Opti	mization.					
	PrincentonNew Jersey: Princenton University Press.						
	2. Rau, S.S. 2009. Engineering Optimization: The	eory and					
	Practice. Fourth Edition. Hoboken, New Yo	rk: John					
	Wiley&Sons.						
	3. Boyd, S. 2004. Convex Optimization. Ca	mbridge:					
	Cambridge University Press.						
	4. Bartholomew-Biggs, M. 2008. Nonlinear Optimization with						
	Engineering Applications. New York:	Springer					
	Science+Business Media, LLC.						

PLO and CO mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10
CO1		✓								
CO2			✓							
CO3				✓						
CO4					✓					
CO5							✓			
CO6								✓		