

UNIVERSITAS NEGERI YOGYAKARTA

FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF MATHEMATICS EDUCATION Jalan Colombo Nomor 1 Yogyakarta 55281 Telepon(0274)565411 Pesawat 217, (0274)565411(TU),fax (0274)548203 Laman :fmipa.uny.ac.id, E-mail :humas_fmipa@uny.ac.id

Bachelor of Science in Mathematics

MODULE HANDBOOK

Module name:	Queuing Theory				
Module level, if applicable:	Undergraduate				
Code:	MAT-6368				
Sub-heading,if applicable:	-				
Classes,if applicable:	-				
Semester:	7 th				
Module coordinator:	Nikenasih Binatari, M.Si.				
Lecturer(s):	Nikenasih Binatari, M.Si.				
Language:	Bahasa Indonesia				
Classification within the	Elective course				
curriculum:					
Teaching format / class	150 minutes lectures and 180 minutes structured activities per				
hoursperweekduring the	week				
semester:					
	Total workload is 136 hours per semester which consists of				
Workload:	150 minutes lectures, 180 minutes structured activities, and				
	180 minutes self-study per week for 16 weeks.				
Creditpoints:	3				
Prerequisites course(s):	ProbabilityTheory (MAT6315)				
	After taking this course the students have ability to:				
Course outcomes:	CO1. Demonstrate collaborative attitude and independence in				
	carrying out individual tasks and group assignments				
	CO2. Communicate ideas in solving mathematical problems in				
	writing or verbally				
	CO3. Describe concepts and methods in queuing theory				

	CO4. Applying concepts and methods in queuing theory						
	This course discusses queuing system elements, arrival and						
Content:	departure process, queuing model, M / G / 1 system,						
	Multiserver, the application of queuing theory.						
	CO1: Attitude assessment is carried out at each meeting by						
	observation and / or self-assessment techniques using the						
	assumption that basically every student has a good attitude.						
	The student is given a value of very good or not good attitude						
	if they show it significantly compared to other students in						
	general. The result of attitude assessment is not a component						
	of the final grades, but as one of the requirements to pass the						
	course. Students will pass from this course if at least have a						
Study/exam achievements:	good attitude.						
	The final mark will be weight as follow:						
	No CO Assesment Assessment Object Techniques	Weight					
	1 CO2, CO a. Individual Written test	15%					
	4 b. group	10%					
	assignments	20%					
	d. MID	25%					
	e. Final Exam	30%					
	Total	100%					
Forms of media:	Board, LCD Projector, Laptop/Computer						
	1. Taha, Hamdy A. 1996. <i>Riset Operasi Edisi kelima</i>						
	(terjemahan), Jilid 2. Jakarta :BinarupaAksara.						
	2. Hillier/Lieberman. 2001. Introduction to Operation						
	Research. Interactive e-text. The McGraw Hill Company.						
	3. Saaty, Thomas L. 1961. Elements of Queueing Theory						
Literature:	with applications. New York. Dover publications, Inc.						
	4. Bunday, Brian D. (1996). An Introduction to Queueing						
	Theory. New York : Johm Willey and Sons.						
	5. Cooper, Robert B. 1981. Introduction to Queueing Theory						
	Second Edition. New York. Elsevier North Holland., Inc.						

PLO and CO mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10
CO1		✓								
CO2				✓						
CO3						✓				
CO4							✓			