

Module designation	Partial Differential Equations
Semester(s) in which the module is taught	4
Person responsible for the module	Nikenasih B, M.Sc
Language	Bahasa Indonesia
Relation to curriculum	Compulsory course
Teaching methods	150 minutes lectures and 180 minutes structured activities per week.
Workload (incl. contact hours, self-study hours)	Total workload is 136 hours per semester which consists of 150 minutes lectures, 180 minutes structured activities, and 180 minutes self-study per week for 16 weeks.
Credit points	3
Required and recommended prerequisites for joining the module	MAT6313 Differential Equations

	After taking this serves the students have ability to					
Module objectives/intended	After taking this course the students have ability to:					
learning outcomes	CO1. demonstrate collaborative attitude and					
	independence to do individual or group assigntments					
	CO2.Communicate ideas in solving mathematical problems in writing or verbally					
	CO3.Understanding the motivation to learn partial					
	differential equations and their relation to elementary					
	differential equations.					
	CO4.solving partial differential equation linear order one,					
	semilinear and quasilinear					
	CO5.solving partial differential order two, parabolic,					
	hyperbolic, elliptic					
	CO6. Understanding Fourier series concept					
	CO7. Understanding separation variable method.					
	CO8. Analyzing first-order partial differential models of					
	conservation law equations and applying them to the case					
	of traffic flow					
	CO9. Understanding "The Big Three Models" : Heat					
	Equations, Laplace Equations and Wave Equations					
	CO10. Using MAPLE software to analyze results					
Content	The course contains discussion on First order of partial differential					
	equation, classifications: hyperbolic, parabolic, and elliptic,					
	characteristic's curve, d'alembert equation, Fourier series,					
	convergence of Fourier series, odd and even function, separation					
	of variable's method, The Big Three Equations.					
Examination forms	CO1: Attitude assessment is carried out at each meeting by observation					
	and / or self-assessment techniques using the assumption that basically					
	every student has a good attitude.					
_						

Study and examination		
requirements		

The student is given a value of very good or not good attitude if they show it significantly compared to other students in general. The result of attitude assessment is not a component of the final grades, but as one of the requirements to pass the course. Students will pass from this course if at least have a good attitude.

The final mark will be weight as follow:

No	со	Assessment Object	Assessment Technique	Weight
1	CO 1	a. Presentat	Observation	5%
		ion		10%
		b. Discussio		
		n		
2	CO 2, CO 3,	a. Individual	Written	10%
	CO 4	assignme		10%
		nt		20%
		b. Group		20%
		assignme		25%
		nt		
		c. Quiz		
		d. Midterm		
		e. Final test		
		Total		100%

Reading list

- Binatari, Nikenasih. 2019. Modul Persamaan Diferensial Parsial.
- 2. Haberman, Richard. 2013. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, 5th Ed. USA. Pearson.
- 3. Agarwal, Ravi P. O'Regan, Donal. 2009. Ordinary and Partial Differential Equations. USA. Springer.
- 4. Zaghmanoglou, E.C. Thoe, Dale W. Introduction to Partial Differential Equation with Application. New York. Dover Publications, Inc.