

Module designation	Introduction to Mathematical Statistics		
Semester(s) in which the module is taught	4		
Person responsible for the module	Dr. Dra. Mathilda Susanti M.Si.		
Language	Bahasa Indonesia		
Relation to curriculum	Compulsory course		
Teaching methods	150 minutes lectures and 180 minutes structured activities per week.		
Workload (incl. contact hours, self-study hours)	Total workload is 136 hours per semester which consists of 150 minutes lectures, 180 minutes structured activities, and 180 minutes self-study per week for 16 weeks.		
Credit points	3		
Required and recommended prerequisites for joining the module	MAT6315 - Probability Theory		
Module objectives/intended learning outcomes	CO 1. Demonstrate respect for the views, opinions, or original findings of others		
	CO 2. Demonstrate critical, creative, innovative, and systematic thinking in the development of science and technology, both independently and in groups		
	CO 3. Demonstrate the ability to convey mathematical ideas in writing and orally based on the values of honesty		
	CO 4. Explain concepts in mathematical statistics (joint distribution, estimation, central limit theorem, and hypothesis testing)		
	CO 5. Prove properties and theorems in mathematical statistics		
	CO6. Solving problems using concepts, properties, or theorems in mathematical statistics		
Content	This course studies random variables, including several methods for determining the probability density function of random variables, distribution limits, statistics and sampling distributions, and point estimation.		
Examination forms	CO1: Attitude assessment is carried out at each meeting by observation		
	and / or self-assessment techniques using the assumption that basically		
	every student has a good attitude.		

Study and examination		
requirements		

The student is given a value of very good or not good attitude if they show it significantly compared to other students in general. The result of attitude assessment is not a component of the final grades, but as one of the requirements to pass the course. Students will pass from this course if at least have a good attitude.

The final mark will be weight as follow:

No	со	Assessment Object	Assessment Technique	Weight
1	CO 1	a. Presentat	Observation	5%
		ion		10%
		b. Discussio		
		n		
2	CO 2, CO 3,	a. Individual	Written	10%
	CO 4	assignme		10%
		nt		20%
		b. Group		20%
		assignme		25%
		nt		
		c. Quiz		
		d. Midterm		
		e. Final test		
	100%			

Reading list

- 1. Robert V. Hogg, Allen T. Craig, (1995). Introduction to Mathematical Statistics. Pearson Education.
- 2. Rice, John A., 1995. Mathematical Statistics and Data Analysis. Belmont: Duxbury Press
- 3. A. Bain, L.J and Engelhart, M. (1992). Introduction to Probability and Mathemat ical Statistics. Second Edition, Duxbury Press, Belmont, California.