

Module designation	Matrix Theory				
Semester(s) in which the module is taught	5				
Person responsible for the module	1. Lusi Harini S.Si., M.Sc.				
	2. Thesa Adi Saputra Yusri M.Cs.				
Language	Bahasa Indonesia				
Relation to curriculum	Elective course				
Teaching methods	150 minutes lectures and 180 minutes structured activities per week.				
Workload (incl. contact hours, self-study hours)	Total workload is 136 hours per semester which consists of 150 minutes				
	lectures, 180 minutes structured activities, and 180 minutes self-study				
	per week for 16 weeks.				
Credit points	3				
Required and recommended prerequisites for joining the module	MAT6304 - Number Theory				
Module objectives/intended	After taking this course the students have ability to:				
learning outcomes	CO1. Demonstrate respect for other people's opinions in				
	completing group and individual tasks				
	CO2. Communicate ideas in solving mathematical problems in writing or verbally.				
	CO3. Explain the concept of module and its properties				
	CO4. Prove the properties of module and submodule				
	CO5. Prove the properties of homomorphism in module				
	CO6. Prove the properties of direct sum, torsion module, free				
	module, simple module and artin module				
	CO7. Use the concept of module in solving mathematical				
	problem				
Content	This course discusses the basics of cryptography, classical cryptography,				
	Data Encryption Standard (DES), Advanced Encryption Standard (AES),				
	public key, RSA, Elgamal, discrete logarithms, email and internet				
	security.				
Examination forms	Attitude assessment is carried out at each meeting by observation				
	and / or self-assessment techniques using the assumption that basically every student has a good attitude. The student is given a				
	value of very good or not good attitude if they show it significantly				
	compared to other students in general.				

Study and examination requirements	The result of attitude assessment is not a component of the final grades, but as one of the requirements to pass the course. Students will pass from this course if at least have a good attitude. The final mark will be weight as follow:					
	No	СО	Assessmen t Object	Assessmen t Technique	Weight	
	1	CO1	presentatio n	Observation		
	2	CO2, CO3 CO4 and CO5	a. Individua l Assignme nt b. Group Assignme nt c. Mid d. Final Exam	Presentatio n / written test	30% 20% 25% 25%	
	A. Molli	'n AD 20	007 An Intro	Total duction to (100%	
Reading list	A. Mollin, A.R. 2007. An Introduction to Cryptography. Chapman&Hall/CRC: New York B. Stinson, D.R. 2006. Cryptography; Theory and Practice. Chapman&Hall/CRC: New York					