

Module designation	Coding Theory			
Semester(s) in which the module is taught	6			
Person responsible for the module	Lusi Harini S.Si., M.Sc.			
Language	Bahasa Indonesia			
Relation to curriculum	Elective course			
Teaching methods	150 minutes lectures and 180 minutes structured activities per week.			
Workload (incl. contact hours, self-study hours)	Total workload is 136 hours per semester which consists of 150 minutes lectures, 180 minutes structured activities, and 180 minutes self-study per week for 16 weeks.			
Credit points	3			
Required and recommended prerequisites for joining the module	MAT6320 - Introduction to Ring Theory			
Module objectives/intended learning outcomes	CO 1: Appreciating the work and opinions of other groups in conveying ideas in writing and orally			
	CO 2: Demonstrating a collaborative attitude and independence in carrying out independent and group tasks			
	CO 3: Communicating ideas for solving mathematical problems in writing and orally			
	CO 4: Explaining the basic concepts of error correction code theory and being able to apply them to solve related problems.			
	CO 5: Proving properties, lemmas, and theorems related to basic concepts about finite fields, vector spaces over finite fields, ideals of a ring, linear codes including generator matrices, dual codes, Hamming codes, perfect codes, parity-check matrices, single error correction code decoding, standard array decoding, cyclic codes to be applied in logical reasoning			
	CO 6: Using algorithms to solve problems related to linear codes including generator matrices, dual codes, Hamming codes, perfect codes, parity-check matrices, single error correction code decoding, standard array decoding, and cyclic codes.			

Content	This course covers the basic concepts of error correction coding, including basic concepts of finite fields, vector spaces over finite fields, ideals of a ring, linear codes including generator matrices, dual codes, Hamming codes, perfect codes, parity-check matrices, single-error correction code decoding, standard array decoding, and cyclic codes.						
Examination forms	CO1: Attitude assessment is carried out at each meeting by observation and / or self-assessment techniques using the assumption that basically every student has a good attitude.						
Study and examination requirements	The student is given a value of very good or not good attitude if show it significantly compared to other students in general. The result attitude assessment is not a component of the final grades, but as of the requirements to pass the course. Students will pass from course if at least have a good attitude. The final mark will be weight as follow:						
	No	со	Assessment Object	Assessment Technique	Weight		
	1	CO 1	a. Presentat ion b. Discussio n	Observation	5% 10%		
	2	CO 2, CO 3, CO 4	a. Individual assignme nt b. Group assignme nt c. Quiz d. Midterm e. Final test	Written	10% 10% 20% 20% 25%		
	Total 100%						
Reading list	 Vanstone, S.A, and Oorschot, P.C.V. 1989. An Introduction to Error Correcting Codes with Applications. Kluwer Academic Publisher Ling, S. and Xing, C. 2004. Coding Theory: A First Course. Cambridge: Cambridge University Press. Hill, R. 1986. A First Course In Coding Theory. Oxford: Clarendon Press. 						