

Module designation	Engineering Mathematics		
Semester(s) in which the module is taught	5		
Person responsible for the	1. Fitriana Yuli Saptanningtyas S.Pd, M.Si.		
module	2. Husna 'Arifah S.Si., M.Sc.		
Language	Bahasa Indonesia		
Relation to curriculum	Elective course		
Teaching methods	150 minutes lectures and 180 minutes structured activities per week.		
Workload (incl. contact hours, self-study hours)	Total workload is 136 hours per semester which consists of 150 minutes		
	lectures, 180 minutes structured activities, and 180 minutes self-study		
	per week for 16 weeks.		
Credit points	3		
Required and recommended prerequisites for joining the module	MAT6313 - Differential Equations		
Module objectives/intended learning outcomes	CO1. Communicate ideas for solving mathematical problems related to differential equation systems, phase space, stability, power series of differential equations, Bessel functions, and Laplace transforms in writing and orally.		
	CO2 Demonstrate a collaborative and independent attitude in carrying out individual and group tasks.		
	Co3 Able to understand the concept of differential equations, phase plane concepts, stability, and use power series methods in finding solutions to differential equations.		
	CO4 Able to use power series methods in finding Bessel function formulas.		
	CO5 Able to use Laplace transform concepts to find solutions to differential equation problems.		
Content	This course covers the application of differential equation systems, phase fields, stability, power series of differential equations, Bessel functions, and Laplace transforms Laplace		
Examination forms	CO1: Attitude assessment is carried out at each meeting by observation		
	and / or self-assessment techniques using the assumption that basically		
	every student has a good attitude.		

Study and examination	
requirements	

The student is given a value of very good or not good attitude if they show it significantly compared to other students in general. The result of attitude assessment is not a component of the final grades, but as one of the requirements to pass the course. Students will pass from this course if at least have a good attitude.

The final mark will be weight as follow:

No	со	Assessment Object	Assessment Technique	Weight
1	CO 1	a. Presentat	Observation	5%
		ion		10%
		b. Discussio		
		n		
2	CO 2, CO 3,	a. Individual	Written	10%
	CO 4	assignme		10%
		nt		20%
		b. Group		20%
		assignme		25%
		nt		
		c. Quiz		
		d. Midterm		
		e. Final test		
	100%			

Reading list

- 1. A. Kreysig, E. 2006. Advanced Enginering Mathematics. Edisi 9. Singapore: John Weley dan Sons
- 2. B. Wilson. B. Howard, Dkk., 2002. Advanced Mathemathics and Mechanics Applications Using Matlab, New York: Chapman & Hall
- 3. C. Boyce, W.E. and Diprima, R.C. 1997. Elementary Differential Equations and Boundary Value Problems. Sixth Edition. New York: John Wiley & Sons, Inc.
- 4. D. Ross, S.L. 1984. Differential Equations. Third Edition. New York: John Wiley & Sons, Inc