

Module designation	Initial and Boundary Value Problems		
Semester(s) in which the module is taught	5		
Person responsible for the module	Drs. Muhammad Fauzan M.Sc.St.		
Language	Bahasa Indonesia		
Relation to curriculum	Elective course		
Teaching methods	150 minutes lectures and 180 minutes structured activities per week.		
Workload (incl. contact hours, self-study hours)	Total workload is 136 hours per semester which consists of 150 minutes lectures, 180 minutes structured activities, and 180 minutes self-study per week for 16 weeks.		
Credit points	3		
Required and recommended prerequisites for joining the module	MAT6324 - Mathematical modelling		
Module objectives/intended	Students know that/know how to/are able to		
learning outcomes	Co1. Communicate ideas for solving systems of partial differential equations, Fourier series, Fourier integrals, Fourier transformations, and traveling wave equations in writing and orally.		
	CO2 Demonstrate a collaborative and independent attitude in carrying out individual and group tasks.		
	CO3 Able to understand the definitions of partial differential equations, Fourier series, Fourier integrals, and Fourier transforms		
	CO4 Able to use the concept of traveling wave equations to find solutions to initial value problems and boundary conditions		
Content	This course covers the application of partial differential equation systems, Fourier series, Fourier integrals, Fourier transforms, and the solution of traveling wave equations.		
Examination forms	CO1: Attitude assessment is carried out at each meeting by observation and / or self-assessment techniques using the assumption that basically every student has a good attitude.		

Study and examination		
requirements		

The student is given a value of very good or not good attitude if they show it significantly compared to other students in general. The result of attitude assessment is not a component of the final grades, but as one of the requirements to pass the course. Students will pass from this course if at least have a good attitude.

The final mark will be weight as follow:

No	со	Assessment Object	Assessment Technique	Weight
1	CO 1	a. Presentat	Observation	5%
		ion		10%
		b. Discussio		
		n		
2	CO 2, CO 3,	a. Individual	Written	10%
	CO 4	assignme		10%
		nt		20%
		b. Group		20%
		assignme		25%
		nt		
		c. Quiz		
		d. Midterm		
		e. Final test		
	100%			

Reading list

- 1. A. Humi, M. And Miller, Wil B,1992, Boundary Value Problems and Partial Differential Equations, PWS KENT Publishing Company, Boston.
- 2. B. Braun, M. Differential Equation and Their Applications. 1983. Third Edition. USA: Springer-Verlag New York, Inc.
- 3. C. Zill, Dennis G., Cullen, Michael R. 1997. Differential Equations with Boundary-value Problems. Fourth Edition. USA: Brooks/Cole Publishing Company.