

| Module designation                                            | Statistical Computing                                                                                                                                                                                                                                                                                           |  |  |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Semester(s) in which the module is taught                     | 5                                                                                                                                                                                                                                                                                                               |  |  |
| Person responsible for the module                             | Retno Subekti, M.Sc.                                                                                                                                                                                                                                                                                            |  |  |
| Language                                                      | Bahasa Indonesia                                                                                                                                                                                                                                                                                                |  |  |
| Relation to curriculum                                        | Elective course                                                                                                                                                                                                                                                                                                 |  |  |
| Teaching methods                                              | 150 minutes lectures and 180 minutes structured activities per week.                                                                                                                                                                                                                                            |  |  |
| Workload (incl. contact hours, self-study hours)              | Total workload is 136 hours per semester which consists of 150 minutes lectures, 180 minutes structured activities, and 180 minutes self-study per week for 16 weeks.                                                                                                                                           |  |  |
| Credit points                                                 | 3                                                                                                                                                                                                                                                                                                               |  |  |
| Required and recommended prerequisites for joining the module | MAT6307 - Algorithm and Programming                                                                                                                                                                                                                                                                             |  |  |
| Module objectives/intended learning outcomes                  | CO1. Demonstrate collaborative attitude and independence in carrying out individual tasks and group assignments.                                                                                                                                                                                                |  |  |
|                                                               | CO2. Communicate ideas in solving mathematical problems in writing or verbally.                                                                                                                                                                                                                                 |  |  |
|                                                               | CO3. Understand the regression concept in the analysis of the relationship of two variables such as simple linear regression and multiple linear regression                                                                                                                                                     |  |  |
|                                                               | CO4. Students are able to do a descriptive analysis and basic.inferential analysis using R Program,a free-license statistical software.                                                                                                                                                                         |  |  |
| Content                                                       | This statistical computing subject contains an exploration of the use of the R program statistical software for statistical data analysis, both exploration analysis and confirmation analysis. Several analyzes which are discussed such as inference for two populations, ANOVA, regression, goodness of fit. |  |  |
| Examination forms                                             | CO1: Attitude assessment is carried out at each meeting by observation                                                                                                                                                                                                                                          |  |  |
|                                                               | and / or self-assessment techniques using the assumption that basically                                                                                                                                                                                                                                         |  |  |
|                                                               | every student has a good attitude.                                                                                                                                                                                                                                                                              |  |  |



| Study and examination |  |
|-----------------------|--|
| requirements          |  |

The student is given a value of very good or not good attitude if they show it significantly compared to other students in general. The result of attitude assessment is not a component of the final grades, but as one of the requirements to pass the course. Students will pass from this course if at least have a good attitude.

The final mark will be weight as follow:

| No    | со         | Assessment<br>Object | Assessment<br>Technique | Weight |
|-------|------------|----------------------|-------------------------|--------|
| 1     | CO2, CO3,C | a. Individual        | Written                 | 15%    |
|       | 04         | Assignment           |                         |        |
|       |            | b. Group             |                         | 10%    |
|       |            | Assignment           |                         |        |
|       |            | c. Quiz              |                         | 20%    |
|       |            | d. Mid-Term          |                         | 25%    |
|       |            | Examination          |                         |        |
|       |            | e. Final             |                         | 30%    |
|       |            | Examination          |                         |        |
| Total |            |                      |                         | 100%   |

## Reading list

- 1. M. J. Crawley, 2005, Statistics: An Introduction using R, Imperial College London, UK. John Wiley & Sons, Ltd.
- 2. W. N. Venables, D. M. Smith, and the R Development Core Team, 2015, An Introduction to R, Notes on R: A Programming Environment for Data Analysis and Graphics.
- 3. W. John Braun and Duncan J. Murdoch, 2007, A First Course in Statistical Programming with R, Cambridge University Press.
- 4. Verzani, John. 2005. Using R for Introductory Statistics. hapman& Hall/CRC Press